写在最前面的
这篇文章并没有非常详细的算法证明过程。导论里面有非常详细的证明过程。本文只阐述“广度优先和深度优先搜索的思路以及一些简单应用”。
两种图的遍历算法在其他图的算法当中都有应用,并且是基本的图论算法。
广度优先搜索
广度优先搜索(BFS),可以被形象的描述为“浅尝辄止”,具体一点就是每个顶点只访问它的邻接节点(如果它的邻接节点没有被访问)并且记录这个邻接节点,当访问完它的邻接节点之后就结束这个顶点的访问。
广度优先用到了“先进先出”队列,通过这个队列来存储第一次发现的节点,以便下一次的处理;而对于再次发现的节点,我们不予理会——不放入队列,因为再次发现的节点:
- 无非是已经处理完的了;
- 或者是存储在队列中尚未处理的。
《算法导轮》对两种搜索都采用了很聪明的做法,用白色WHITE来标志未发现的节点,用灰色GRAY来标志第一次被发现的节点,用黑色BLACK来标志第二次被发现的节点。
于是有了:
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 | BFS(G,s) for each vertex v in V[G] status[v] = WHITE /******其他初始化******/ status[s] = GRAY //s是原点 queue q 入队(q,s); while q非空 t = 出队(q); for each vertex v in Adj[t] //与t邻接的点 if status[v] = WHITE //只对未访问的操作 status[v] = GRAY //标记为第一次访问 /******其他操作******/ 入队(q,v) status[t] = BLACK //此点已经处理完了 |
导轮还在上面伪代码的“其他”中加入了访问长度和父节点的操作。此举可以算出,从源点到其他顶点路径的最少步数和它的具体路径。
关于广度优先搜索的一个简单应用:
假如有问题,每个村庄之间都通过桥来联通,先给出村庄的图,问村庄A到村庄B最少要通过多少座桥?这个问题可以很容易的转化为上面的BFS问题。
深度优先搜索
深度优先搜索(DFS),可以被形象的描述为“打破沙锅问到底”,具体一点就是访问一个顶点之后,我继而访问它的下一个邻接的顶点,如此往复,直到当前顶点一被访问或者它不存在邻接的顶点。
同样,算法导论采用了“聪明的做法”,用三种颜色来标记三种状态。但这三种状态不同于广度优先搜索:
- WHITE 未访问顶点
- GRAY 一条深度搜索路径上的顶点,即被发现时
- BLACK 此顶点的邻接顶点被全部访问完之后——结束访问次顶点
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 | DFS(G,s) for each vertex v in V(G) status[v] = WHITE /******其他初始化******/ for each vertex v in V(G) if (status[v]==WHITE) DFS-VISIT(v) DFS-VISIT(v) status[v] = GRAY for each vertex t in Adj(v) if status[t] = WHITE DFS-VISIT(t) /******其他操作******/ status[v] = BLACK |
通过给DFS搜索过程中给每一个顶点加时间戳,就可以实现拓扑排序了。实现拓扑排序需要:
对于每一个顶点,都有两个时间戳,分别这样来定义:
- 在一顶点刚被发现的时候,标记此顶点的第一个时间戳;
- 在结束此顶点的访问的时候,标记此顶点的第二个时间戳。时间戳可以用简单的123456来标记,只要能区分大小就行。
总结
两个算法都是O(V+E),在用到的时候适当选取。在使用白灰黑标志的时候,突然明白了如何用深度优先搜索来判断有向图中是否存在环。
转载 http://daoluan.net/blog/dfs-and-bfs/